Section 12.10

Solving Probability Problems by Using Combinations

Copyright © 2009 Pearson Education, Inc.

Example

- A club consists of 5 men and 6 women. Four members are to be selected at random to form a committee. What is the probability that the committee will consist of two women?
$P\binom{$ two }{ woman }$=\frac{\# \text { of possible committees with } 2 \text { woman }}{\text { total number of 4-member committees }}$

$$
\begin{aligned}
& =\frac{{ }_{6} C_{2}}{{ }_{11} C_{4}}=\frac{\frac{6!}{4!2!}}{\frac{11!}{7!4!}}=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{4 \cdot 3 \cdot 2 \cdot 1 \cdot 2 \cdot 1} \cdot \frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \\
& =\frac{15}{330}=\frac{1}{22}
\end{aligned}
$$

Example

- A bag contains four red balls and five green balls. You plan on selecting three balls at random. Determine the probability of selecting three green balls.

$$
\begin{gathered}
P(3 \text { green balls })=\frac{{ }_{5} C \quad 3}{{ }_{9} C^{3}} \\
=\frac{10}{84}=\frac{5}{42}
\end{gathered}
$$

Example

- You are dealt 5 cards from a standard deck of 52 cards. Determine the probability that you are dealt 5 red cards.

$$
\begin{gathered}
\mathrm{P}(5 \text { red cards })=\frac{{ }_{26} C_{5}{ }_{5}{ }_{5} C_{5}}{} \\
=\frac{65780}{2598960} \\
=\frac{253}{9969}
\end{gathered}
$$

Example

- The Honey Bear is testing 10 new flavors of ice cream. They are testing 5 vanilla based, 3 chocolate based and 2 strawberry based ice creams. If we assume that each of the 10 flavors has the same chance of being selected and that 4 new flavors will be produced, find the probability that
a) no chocolate flavors are selected.
b) at least 1 chocolate is selected.
c) 2 vanilla and 2 chocolate are selected.

Copyright © 2009 Pearson Education, Inc.

Solution

- 5 vanilla, 3 chocolate, 2 strawberry selecting 4 flavors
a) $P($ no chocolate $)=\frac{{ }_{7} C_{4}}{{ }_{10} C_{4}}=\frac{35}{210}=\frac{1}{6}$
b) $P($ at least 1 chocolate $)=1-P$ (no chocolate $)$

$$
=1-\frac{1}{6}=\frac{5}{6}
$$

Solution (continued)

- 5 vanilla, 3 chocolate, 2 strawberry; selecting 4 flavors
c. $\quad P\binom{2$ vanilla and }{2 chocolate }$=\frac{{ }_{5} C_{2} \cdot{ }_{3} C_{2}}{{ }_{10} C_{4}}$

$$
\begin{aligned}
& =\frac{10 \cdot 3}{210}=\frac{30}{210} \\
& =\frac{1}{7}
\end{aligned}
$$

Copyright © 2009 Pearson Education, Inc.

Example

- An airline is given permission to fly 4 new routes of its choice. The airline is considering 12 new routes: 4 routes in FL, 5 routes in CA, and 3 routes in TX. If the airline selects the 4 new routes at random from the 12 possibilities, determine the probability that
- 2 are in FL and 2 are in TX
- 3 are in CA and 1 is in FL
- 1 is in FL, 1 is in CA, and 2 are in TX
- At least one is in TX

Example

- An airline is given permission to fly 4 new routes of its choice. The airline is considering 12 new routes: 4 routes in FL, 5 routes in CA, and 3 routes in TX. If the airline selects the 4 new routes at random from the 12 possibilities, determine the probability that
- 2 are in FL and 2 are in TX
- 3 are in CA and 1 is in FL
- 1 is in FL, 1 is in CA, and 2 are in TX
- At least one is in TX

Copyright © 2009 Pearson Education, Inc.

Example

- An airline is given permission to fly 4 new routes of its choice. The airline is considering 12 new routes: 4 routes in FL, 5 routes in CA, and 3 routes in TX. If the airline selects the 4 new routes at random from the 12 possibilities, determine the probability that
- 2 are in FL and 2 are in TX $\frac{2}{55}$
- 3 are in CA and 1 is in FL $\frac{8}{99}$
- 1 is in FL, 1 is in CA, and 2 are in TX
- At least one is in TX

Copyright © 2009 Pearson Education, Inc.

Example

- An airline is given permission to fly 4 new routes of its choice. The airline is considering 12 new routes: 4 routes in FL, 5 routes in CA, and 3 routes in TX. If the airline selects the 4 new routes at random from the 12 possibilities, determine the probability that
- 2 are in FL and 2 are in TX $\frac{2}{55}$
- 3 are in CA and 1 is in FL $\frac{8}{99}$
- 1 is in FL, 1 is in CA, and 2 are in TX $\frac{4}{33}$
- At least one is in TX

Copyright © 2009 Pearson Education, Inc.

Example

- An airline is given permission to fly 4 new routes of its choice. The airline is considering 12 new routes: 4 routes in FL, 5 routes in CA, and 3 routes in TX. If the airline selects the 4 new routes at random from the 12 possibilities, determine the probability that
- 2 are in FL and 2 are in TX $\frac{2}{55}$
- 3 are in CA and 1 is in FL $\frac{8}{99}$
- 1 is in FL, 1 is in CA, and 2 are in TX $\frac{4}{33}$
- At least one is in TX $\frac{41}{55}$

